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Summary. Kinetic studies of the linearized response of membrane potential in Nitella 
to light have revealed the existence of a feedback loop in the pathway of light action. Its 
existence can hardly be seen in the time course of the responses to dark/light transitions. 
However, making use of sine waves as input signals and employing a computeraided 
evaluation has resulted in finding complex time constants in the transfer function of the 
light effect which point out the existence of a feedback loop. Besides, sometimes 
spontaneous oscillations with periods of about 1 hr have been observed. It is shown that 
this system is different from that one reported in literature to be related to cytoplasmic 
streaming. By measuring the electrical low-frequency impedance, it has been demon- 
strated that it is not the purpose of the system to control membrane potential, even 
though secondary effects of the injected current have been found. It seems to be 
reasonable to assume that this system is involved in the control of a biochemically 
relevant parameter like the cytoplasmic pH by means of adjusting the balance of 
counteracting transmembrane transport processes. 

In green plants  l ight acts via pho tosyn thes i s  on  the ion t r anspo r t  and 

thus on  the electrical  p roper t ies  at the p lasma membrane .  Star t ing f rom 

the papers  of  M a c R o b b i e  (e.g., 1966) it has been  bel ieved for several  

years  tha t  pho tosyn thes i s  exerts its con t ro l  over  the ion fluxes at the 

p lasma m e m b r a n e  by supplying the energy tha t  fuels the ion p u m p s  (see 
Raven,  1969). However ,  now there  are m a n y  observa t ions  indicat ing tha t  

the concep t  of energy supply per se is no t  sufficient to accoun t  for all 

exper imenta l  findings (see Raven,  1974). 

Thus  feedback regula t ions  have been pos tu la ted  for the concen-  

t ra t ions  of  N O  3 and  C1- (Cram, 1973) and  of  N a  § (Robinson ,  1968). In 

the case of  the cy top lasmic  pH,  indica t ions  of  a feedback regu la t ion  are 

expec ted  to show up in the kinet ic  behav io r  of  the m e m b r a n e  potent ia l ,  

because  b iochemica l  " p H - s t a t s "  like that  one  p ro p o sed  by Davies  (1973) 

are no t  efficient in ba lanc ing  all the pH-shif ts  caused by  me tabo l i c  
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activities, and thus the transmembrane transport of protons or hydroxyl 
ions is believed to be a major means of maintaining cytoplasmic pH 
(Raven & Smith, 1974; 1976). Proton fluxes are supposed to be etec- 
trogenic in green plants (Spanswick, 1972; 1974, Felle & Bentrup, 1976) 
as well as in fungi (Slayman, Long & Lu, 1973). Pallaghy and Ltittge 
(1970) and Andrianov et al. (1971) have demonstrated that the light- 
induced changes in membrane potential are related to proton fluxes. 

The assumption of a feedback control of the cytoplasmic pH is 
reasonable. On the one hand, there is the need for such a control 
mechanism, because the pH is the most important parameter determin- 
ing the activity of enzymes and because a pH shift may be caused by 
several metabolic processes like photosynthetic CO2-fixation, nitrogen 
assimilation, excess organic acid synthesis used in turgor regulation (see 
Raven & Smith, 1974; 1976), or proton extrusion from photosynthesizing 
chloroplasts (Heldt et al., 1973). 

On the other hand, there are experimental findings which point out 
the regulation of the cytoplasmic pH like the coupling between the 
spatially separated HCO•- and OH--transport sites (Lucas, 1976) or the 
constancy of the pH in the cytoplasm, when changes in the pH of the 
bathing medium shift the pH in the more distant vacuole (see, e.g., 
Walker & Smith, 1975). 

The hypothesis that the pH in the cytoplasm is controlled by means of 
the electrogenic transmembrane transport of protons or hydroxyl ions is 
supported by the observation of Davis (1974) that the light-induced changes 
in cytoplasmic pH and in membrane potential in Phaeoceros laevis are of 
like characteristics. In this paper it will be shown that a refined analysis 
of the light-induced responses of the potential reveals an oscillatory 
component which points out the existence of a feedback loop. 

Materials and Methods 

General 

If not otherwise stated, Nitella mucronata A.Br. Miquel was used in the experiments. 
The cells had been collected from a pond in the botanical garden of Kiel and were kept 
in plastic basins in the lab in Forsberg (1965) medium II for about three years at a 
temperature of 17~ and at a light intensity of 1 W/m 2 (16hr per day). For  the 
experiments in Fig. 4 and in Fig. 5 Nitella translucens was used (a gift of Dr. Vredenberg, 
Wageningen). 

Details of the experimental set-up and of the procedure of measuring frequency 
responses have been described in previous papers (Hansen, Warncke & Keunecke, 1973; 
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Hansen, 1974). Briefly, single internodal cells of Nitella were placed in a small Lucite 
vessel perfused by artificial pond water containing 0.1 mM/liter KC1, 1.0 mM/liter NaC1, and 
0.1 mmole/1 CaC12. Before entering the vessel the solution flowed through a coil embed- 
ded in water of adequate temperature, which was 17 ~ if not otherwise stated. The 
changes in membrane potential were evoked by the red light of the luminescence diode 
MV4H of Monsanto (2=680 nm, bandwidth=40 nm) by modulating the light intensity 
by sine waves of frequencies ranging from 16 cycles/rain to 1 cycle/4hr. The modulation 
depth was 50~;  that means that the light intensity varied between 0.5 and 1.5 W/m 2 
during the course of a sine wave. This modulation depth and this range of intensity had 
been proved to yield linearized responses by means of experiments which will be 
published in a separate paper. The low frequencies were generated by a digital sine wave 
generator (Hansen, 1970), which also served as a master clock for the data acquisition. 

Recording Apparatus 

The membrane potential of the Nitella cell was measured by conventional microelec- 
trodes filled with 1 n KC1 connected to high-impedance FET amplifiers. After adequate 
amplification, the light-induced changes in membrane potential were recorded on a four- 
channel chart recorder (see Hansen et al., 1973) and besides, after analog to digital 
conversion (1 bit = 100 gV), punched on a paper tape (6 to 36 samples per period of a 
sine-wave cycle depending on the signal to noise ratio). The tapes were fed into the X-8 
computer of the Kieler Rechenzentrum, and the Fourier coefficients of the light-induced 
changes were calculated. The fundamental waves were used for the frequency responses 
(see Fig. 2), and the higher harmonics served as a proof for linearity. Before Fourier 
analysis, the drift in the membrane potential was eliminated by subtracting a polynomial 
of the third degree obtained by regression analysis. The calculation of the kinetic data of 
the transfer functions [see Eq. (4)] was carried out by means of the ALGOL program of 
Strobel (1968), modified for the dialog with the PDP-10 computer. Some more details of 
this approach are given by Hansen (1974), and a more detailed description dealing with 
the problems of linearity and drift elimination will be presented in a separate paper. 

Methods of the Analysis of Time-Courses 

The physical background of the analysis of time courses. The temporal behavior of 
biochemical and biological reactions is determined by the differential equations originat- 
ing from the law of mass action. This is demonstrated by the Eqs. (A2a) to (A2c), (A21) 
and (A22) in the Appendix. Diffusion in compartmental systems or filling of reservoirs are 
described by the like differential equations and are included in this kind of analysis 
(Berman, Weiss & Shahn, 1962). However, normally biological systems are nonlinear [see 
Eq. (A20)] leading to a set of nonlinear differential equations like Eqs. (A21) and (A22). 
From such a set of equations the response of the system to a stimulus can be calculated. 
However, in this paper we have to deal with the "inverse problem" (Lee, 1968). We want 
to investigate an unknown mechanism by the observation of its temporal behavior. This 
approach will be successful only if the system is simplified considerably, e.g., by the 
method of linearization. 

Linearization. As it is illustrated by the Eqs. (A23) to (A26) in the Appendix, 
linearization can be achieved by the following experimental procedure: The system is 
kept under steady-state conditions, and the perturbations applied have to be so small 
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that the terms of higher order may be neglected (pseudo first-order system; see Eigen & 
De Mayer, 1963; Eigen, 1968; Milsum, 1966). 

In the case of the measurements presented here, linearity was checked by watching 
whether the amplitude of the output signal was in straight-line proportion to the 
amplitude of the input signal, and whether the phase-shift of a sinusoidal signal was 
independent of the amplitude. The characteristic data gained from a linearized response 
are the time constants. 

Curve fitting in the "time domain". Very often the time constants (z~) are gained from 
responses to a step-wise change of the environmental conditions by fitting the linear 
response f(,) by a superposition of exponentials 

Jit) = Wo + wl exp - + w 2 exp . . . .  (1) 

Curve fitting in the "fi'equency domain". The accuracy of determining the time constants 
can be improved by using sine waves as an input signal (e.g., see the "fast-pole problem" 
Milsum, 1966, p. 213). In chemical systems the benefits of the sine waves are normally not 
utilized because the addition of an agent is much easier to perform than the sinusoidal 
modulation of a concentration. However, in the case of the light effect in Nitella, the light 
intensity can be modulated easily by sine waves of frequencies ranging from 16 cycles/rain 
to 1 cycle/4 hr. At about 13 to 19 frequencies, differing by an octave or by half an octave, 
the ratios of the input to output amplitudes A(:) (A in Fig. 2) and the phase shifts (o(:) 
were recorded. In order to apply the curve-fitting routine of Strobel (1968), A(:) and (o(:) 
were combined to create the "complex transfer function" H(j:). 

Hf j f )  = A(f )  exp ( j  qO(f)). (2) 

As it is demonstrated by the examples in the Appendix [see Eqs. (A5) to (A9)], H(jf) is the 
quotient of two polynomials of the frequency f (or p). By calculating the roots of the 
polynomials, H(jf) may be rearranged to the form of Eq. (3). 

(1 -pn l ) (1  -Pn2)... (3) 
H(Jf)=H~ ( 1 - p z 0 ( 1  -pz2) 

with H 0 being the "dc amplification", p =2~j f  j = ] / - 1 ,  f the frequency. The constants 
n k in the numerator are called to "inverse zeros", the constants z~ in the denominator are 
identical to the time constants zl in Eq. l [see Milsum, 1966; Capellos & Bielski, 1972 
("operational method")]. The mathematical transition from Eq. (1) to Eq. (3) and vice 
versa is mediated by the Laplace transform (Milsum, 1966). 

The meaning of the time constants. The time constants are the roots of the denominator of 
H(j:), and thus they are a more or less complicated function of the elementary reaction 
rates [see Eqs. (A5) to (A9)] and of the concentrations of the reactants in the case of 
nonlinear systems [see Eqs. (A20) to (A24)]. Also diffusion processes or fillings of 
reservoirs may contribute to the actual value of a measured time constant. 

Thus the determination of the time constants is just a first step in the analysis of a 
system, which may already provide knowledge of that kind presented in Fig. 8. The next 
step has to be based on the method of "extended kinetics". That is studying the influence 
of different treatments on the values of the time constants. 
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Complex time constants. Sometimes, pairs of the time constants turn out to be 
complex numbers consisting of each a real component and an imaginary component. The 
two members of a pair have the same real component and differ by the sign of the 
imaginary component (see z 2 and z 3 in Table 1). In the Appendix it is shown that 
complex time constants point out the existence of feedback loops. Inserting complex time 
constants into Eq. (1) results in a damping factor and an oscillation [see Eq. (5)]. Their 
relation to this more familiar phenomenon will be discussed below. 

Spontaneous oscillations. In that case the real component of the complex time 
constants is about zero; thus there is no damping. This is the most convincing evidence 
for the existence of feedback loops. In the case of Nitella it has been employed by 
Nishizaki (1968) and Lefebvre and Gillet (1970). The oscillations reported by Ogata and 
Kishimoto (1976), however, demonstrate that this conclusion needs some comments, as 
discussed below. 

Damped oscillations. If the real component is not zero, but smaller than the 
imaginary component, damped oscillations will be caused by environmental stimuli, as, 
e.g., the application of drugs (Metlicka & Rybova, 1967; Gradmann & Slayman, 1975), 
irradiation with X-rays (Hansen, 1967), or temperature (Spanswick, 1972). By means of 
that method most of the feedback systems in metabolism were detected (e.g., see Higgins, 
1967). 

Hidden oscillations. With increasing magnitude of the real component of the complex 
time constants, the oscillations fade out and can no longer be identified. In that case the 
responses of the system have to be subjected to a powerful mathematical analysis in order 
to check for complex time constants. Due to the better resolution provided by the 
treatment in the "frequency domain" mentioned above, frequency responses like that 
one shown in Fig. 2 will be analyzed by a computer aided curve-fitting procedure. 

Results 

1. The Existence of  a Feedback Loop in the Pathway of  Light Action 
as Revealed by the Kinetic Analysis of  the Light-Induced Changes 

in Membrane Potential 

The problem. Figure  1 displays the response  of  m e m b r a n e  po ten t ia l  

in Nitella to a step-wise change  in light intensity. It  can hard ly  be s ta ted 

whe ther  the b u m p  at 32 min is indicat ing a d a m p e d  oscil lat ion.  Thus  the 

a p p r o a c h  out l ined  in the sect ion " h i d d e n  osci l la t ions"  has to be applied. 

Experiments. Single in te rnoda l  cells of  Nitella were i l luminated  by 

light whose  intensi ty  was m o d u l a t e d  by sine waves of  different f requen-  

cies. This k ind  of  i l luminat ion  induced  sinusoidal  changes  in m e m b r a n e  

potent ial .  The  ampl i tudes  and  the phase  shifts of  these responses  were 

p lo t ted  vs. the f requency  of  the m o d u l a t i o n  in plots  like tha t  one  

d isp layed in Fig. 2. The  exper imenta l  p roced u re  differed f rom tha t  one  

no r ma l ly  e mp loyed  by  the appl ica t ion  of  sine waves and  by the small  
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Fig. 1. Response of the membrane potential in Nitella mucronata to an increase in light 
intensity from 1 W/m 2 to 2W/m 2 (white light, 17 ~ Without a refined analysis, the 

oscillatory component can hardly be identified 

modulat ion depth instead of light/dark transitions. These conditions 
allow the application of the mathematical  analysis described below. 

Mathematical treatment of the experiments. In the sections above and 

in the Appendix it has been shown that Eq. (3) is the only adequate kind 
of functions for the mathematical  approximation of frequency responses 
like that one exhibited in Fig. 2. The curve-fitting procedure can be 
performed by means of the A L G O L  program of Strobel (1968) which 
results in the following transfer function: 

Ho(1 - p n l ) ( 1  - P n 2 ) ( 1  - Pn3) 
Huf) =(1 - p r 0 ( 1  -pz2)(1 -pz3)(1 - p'c4)(1 - p'cs)(1 - -  p ' c 6 ) "  

(4) 

The smooth lines in Fig. 2A are gained by this procedure. Table 1 
displays the mean values of the n~ and z~ evaluated from about 40 
experiments at three different temperatures. 

Interpretation of the results of the curve-fitting procedure. In this paper 
we are not  interested in discussing the curve-fitting routine. We are only 
interested in that part  of Eq. (4) which points out the existence of a 

feedback loop: that are the conjugate complex time constants z 2 and "c 3 
(see Table 1). In the Appendix it is shown that straightforward reactions 
are not capable of creating complex time constants. The occurence of the 
complex time constants in Eq. (4) and Table 1 indicates that there is a 
back flow from a subsequent step to a preceding one in the chain of 
reactions mediating the light effect on membrane potential. This back 
flow is called feedback. 
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Fig. 2. (A): Curve fitting applied to the frequency responses of the action of light on the 
membrane potential in Nitella mucronata. The experimental data are presented by crosses 
(A =amplitude) and circles (~0 =phase). (B): Splitting the frequency response of the 
amplitude A into the three components due to Eq. (9) and to the model in Fig. 8. The 
crosses represent the same data as in A, indicating that at the high-frequency slope the 
depolarizing pathway alone fits the experimental data, whereas at lower frequencies all 

three pathways determine the light-induced changes 

Table 1. Averaged values of the kinetic data of Eq. (4) gained from experiments perform- 
ed at different temperatures" 

nl n2/n 3 "c 1 z 2 andz 3 z 4 T 5 -c 6 H o No. r~ 1If o 
of 
exp. (min) 

7~ 
17~ 
27 ~ 
(7 M 

640 95_+811j -611 -257• - 4 0  -3.7 33 8 184 128 
1213 73__.443j -344 -239_640j  -23  -3.1 -0,2 34 18 64 76 
773 35_+277j -315 -53_+372j - 1 2  2.5 42 8 89 40 

3 3.5 1.5 4 2.1 1.6 1.5 1.6 2.5 4 

a The signs of n 1 and of the real components of n 2 and of n 3 were sometimes negative 
(nl: 10 to 20~o, n2/3:25 to 50~o). The variance aM is given as a factor. The unit o f H  o is 
gV/~  modulation. The experiments performed at 7 and 27 ~ did not comprise enough 
measurements at high frequencies, thus z 6 was not determined in those cases. 

Implications o f  the data in Table 1 for  the appearance o f  oscillations. 

Eq. (4) m a y  be  t r a n s f o r m e d  into  the  t i m e - d o m a i n ,  resul t ing in an  equa-  

t ion  of  the k ind  of  Eq. (1). Of  special  interest  is tha t  t e r m  of  Eq. (1) which  

is re la ted  to the c o m p l e x  t ime  cons tan t s  % and  z3, because  it descr ibes  a 

d a m p e d  osci l lat ion.  I t  is cal led f23(t). 

fz3(t) = Vo exp (t/'Cd) sin (2rCfo t + ~o) (5) 

wi th  t be ing  the t ime. V o is the scal ing fac tor  and  cp is the phase  shift, 

d e t e r m i n e d  by  the  zeros  of  Eq. (4). The  values  of  b o t h  quant i t ies  h a v e  to 
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be calculated by means of the Laplace transform of Eq. (4), but  they are 

of no interest in this discussion, z a is the damping factor and fo is the 
frequency of the oscillation. Their relations to % or z 3 are given by Eqs. 
(6) and (7) (Re = real component  of, Im = imaginary component  of): 

2re f0 = I m  1/'c 2 : - I m  1/'c a (6) 

"c a = 2/Re 1/"c= = 2/Re 1/"c 3 . (7) 

Inserting the time constants of Table 1 into Eqs. (5) to (7) (see Table 1, 

the last two columns) shows that the damping factor z a causes a decay to 

1/e of the initial ampli tude within one period. Thus under normal 

conditions pronounced oscillations are not observed in the time course 
of the light responses of membrane  potential in Nitella (see Fig. 1), and a 

computer  analysis like that one presented here has to be applied in order 

to detect the oscillatory component.  

Additional experimental support for the existence of the feedback loop. 
In the above section it is demonstra ted that under normal  conditions 

there are no pronounced oscillations. However,  the real components  of 

~2 (%) exhibit scatter, which is much larger in single cells than indicated 

by the factor of 2.1 given by the mean value of a M in Table 1. If the real 

components  become very small or even zero, long lasting or even 

spontaneous oscillations will occur. These oscillations, which may be 

taken as a welcome confirmation of the kinetic analysis, have been 

observed, indeed. Though the experimental conditions which favor these 
oscillations are still unknown in detail, it seems that they occur pre- 

3 mV 
I. 

p e r i o d  
2 min 

52 min 

Fig. 3. Spontaneous oscillation of the membrane potential with a period of 52 min, which 
corresponds to the value of 66 rain, which is calculated from the mean value of r2 in 
Table 1 by means of Eq. 6. The superimposed sine wave with a period of 2 min is caused 
by the modulation of the light intensity due to the measurement of a frequency response. 
The markers indicate maximum and minimum light intensity in order to indicate the 
phase shift. The resting potential is about 90 mV. The oscillation occurred before the cell 

died 
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ferably in cells being under stress. Fig. 3 displays such a spontaneous 
oscillation which arose in a dying cell during the measurement of the 
light-induced changes in membrane potential caused by a sine wave of a 
period of 2 min/cycle. 

2. Comparison with Other Oscillatory Phenomena 

An argument against the above interpretation. Ogata and Kishimoto 
(1976) have published some experiments which point out the existence of 
an oscillation of the membrane potential which is strongly correlated to 
cytoplasmic streaming. (It will be called "streaming oscillation" in the 
following text). Though the authors do not know exactly what is the 
origin of this oscillation, they believe that the results favor the expla- 
nation that it is caused by an agent circulating with the streaming 
cytoplasm and acting on membrane potential (personal communication). 
In this case the oscillation may not be taken as an evidence for the 
existence of a feedback control system as it has been done in the case of 
the oscillatory phenomenon described in the preceding section. 

Experimental findings excluding that "c 2 and ~3 are related to the 
streaming oscillation. Spontaneous oscillations with periods in the range 
of seconds and in the range of 5 to 30min have occurred randomly 
during the measurements of the frequency responses of the light effect in 
Nitella. Two examples are shown in Fig. 4. Whereas by virtue of the 
time-scale, the quick oscillations can a priori be excluded from being 
identical to the oscillatory phenomenon related to "c 2 and -c3, additional 
experiments are required in the case of the slow oscillations. In earlier 
experiments, when these slow oscillations were observed, it was checked 
several times, whether there is any dent in the frequency responses (see 
Fig. 2) of the light effect in the range of the frequency of the spontaneous 
oscillation. The result was negative, and fo [see Eq. (6)] was always 
found to be lower than the frequency of the spontaneous oscillation by at 
least a factor of two. Unfortunately, the length of the cells and the 
velocity of the cyclosis were not recorded. 

Thus after getting knowledge of the publication of Ogata and Ki- 
shimoto (1976), the experiments were repeated in a two-compartment 
chamber like that one used by the two authors. Because the two halves of 
the cells were placed in different "ponds", which were electrically in- 
sulated by an air gap, differences in the membrane potentials of the two 
halves could be recorded by external electrodes emerged into the two 
ponds. They will be called "longitudinal potentials". 
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Fig. 4. Spontaneous oscillations of the membrane potential of Nitella translucens, which 
occurred during the measurement of the frequency responses of the light effect. The 
oscillations are superimposed by the light-induced signal. The markers indicate maxi- 
mum and minimum light intensity. (A): Oscillation with a period of 7 sec. Transmembrane 
potential measured by a microelectrode. The period of the light-induced signal is 45 sec. 
(B): The transmembrane 7-sec oscillation is not seen in the longitudinal potential 
measured by external electrodes. (C): Oscillation with a period of 11 min, transmembrane 
potential. The period of the light-induced signal is 1 min. (D): The l 1-min oscillation is a 

longitudinal oscillation 

45 s e c  

The "transmembrane potential" was measured by means of a mi- 
croelectrode inserted into one half of the cell. The light for the induction 
of the light-evoked changes in membrane potential was focused onto that 
half of the celt where the microelectrode was inserted. The unequal 
illumination caused a longitudinal light-induced signal which was wel- 
come as a test for the electrical insulation of the two ponds. 

By means of the comparison between the transmembrane potential 
(Fig. 4A) and the longitudinal potential (Fig. 4B), it is seen that the quick 
oscillation is a transmembrane effect, whereas the slow oscillation is a 
longitudinal oscillation (Fig. 4D), as it is the streaming oscillation found 
by Ogata and Kishimoto (1976). Also the period was always close to the 
value ToK calculated from the formula given by the two authors: 

ToK = 21Iv (8) 

with I being the length of the cell and v the velocity of the cyclosis. In the 
case of Fig. 4D, the measured period T m was 11 min, the length of the cell 
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Fig. 5. Frequency responses of the light effect of the amplitude (A) and of the phase ((p) 
measured in the cell that displayed the oscillation shown in Fig. 4 C and D. No dents are 
seen in the range of frequencies of about 1 cycle/ll min. The resonance frequency [see 
Eq. (6)] is 1 cycle/70 min. The kinetic data corresponding to those in Tables 1 and 2 are 

displayed in the figure. Red light, intensity= 1 W/m 2, T =  17 ~ 

2.5 cm, and v = 60 pm/s, resulting in To~ = 14 rain. The period increases in 
longer cells, e.g., in a cell with /--5.5 cm, T,, was 30 min, and To~ was 
27 min. 

In those cells where the streaming oscillation was observed, the 
frequency responses of the l ight-induced changes were measured and 
evaluated by the method  described in the preceding section. It was found 
that  fo [see Eq. (6)] was always lower than l/T,, by at least a factor of 
two. Fig. 5 displays the frequency response of that  cell which exhibited 
the oscillations shown in Fig. 4D. f0 being 1 cycle /70min is quite 
different from l/T,, being 1 cycle / l l  min. Again it is seen that  the 
frequency response in Fig. 5 does not  exhibit any irregularity at 
1 cycle/11 min. 

The magni tudes  of the t ime constants in Fig. 5 demand  an ad- 
ditional remark,  because they are significantly slower than those of 
Table 1 (e.g., T 4 in Fig. 5 is 74 sec instead of 23 sec in Table 1). This was 
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found in all cells of Nitella translucens, when the experiments were done 
shortly after their arrival from Dr. Vredenberg in Wageningen. After 
having been in Kiel for a month, they became faster. 

3. Is the Membrane Potential Controlled by the Feedback Loop ? 

Considerations initiating the above question. Most of the workers in 
the field of plant electrophysiology are interested in what is the biologi- 
cal meaning of the membrane potential. This question is still open, though 
a first approach to that question may be provided by the finding of 
cotransport systems which are driven by membrane potential in Neuros- 
pora (Slayman & Slayman, 1974; Slayman, Slayman & Hansen, 1977; 
Hansen & Slayman, 1978) and Chlorella (Komor & Tanner, 1977). Thus 
everytime, when the action of a feedback system shows up in membrane 
potential, the question arises whether this feedback system has to control 
membrane potential. (If nature installs a feedback loop to control mem- 
brane potential, this should be a hint that membrane potential is of some 
interest for the cell). 

If the feedback system is involved in the regulation of membrane 
potential, it is expected to compensate changes in membrane potential 
caused by the injection of an electrical current within the time scale given 
by "c 2 and z 3. Some observations reported by other authors indicate that 
there may be an effect of this kind. Walker and Hope (1969) found that 
the current needed to clamp membrane potential became less after some 
minutes. In Nitella long time constants occurred, when the plasma 
membrane was hyperpolarized (Kishimoto, 1966; Bradley & Williams, 
1967). Gradmann (1975) attributed a "late capacity" of about 
3000 gF/cm 2 to an interaction between the ATP-pool and the membrane 
potential, whereas Noyes and Rehm (1971) suggested an accumulation of 
ions in reservoirs in the frog skin as an explanation for the long time 
constants they found. 

Experiments excluding the involvement of the observed feedback loop in 
the regulation of the membrane potential. The considerations outlined 
above stimulated the following experiments. An additional microelec- 
trode was inserted into the Nitella cell, and a current was injected 
causing a displacement of the membrane potential of some mV. In Fig. 6 
the response of the membrane potential to switching on the current is 
shown. Figure 7 displays the frequency response of membrane potential 
to sinusoidal currents, and is nothing else but a measurement of the 
electrical membrane impedance performed in a very low frequency range. 
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Fig. 6. The response of the membrane potential in Nitel la mucronata to a long current 
pulse of 0.5 gA/cm 2. Red light, intensity = 1 W/m 2, T= 17 ~ 
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Fig. 7. The frequency responses of the amplitude (A) and of the phase ((p) of the changes 
in the membrane potential of Nitel la mucronata caused by the injection of sinusoidal 
currents with an amplitude of 0.5 gA/cm 2 and with frequencies ranging from 1 cycle/min 
to 1 cycle/4 hr. The experimental data are fitted by the same routine as the data of Figs. 2 
and 5. The kinetic data are displayed in the figure. Red light, intensity= 1 W/m 2, 

T=17~ 

The experiments of bo th  kinds demons t ra te  very clearly tha t  the 

feedback system is no t  designed in order  to control  me mb r a n e  potential .  
In Fig. 6, the deviat ion of the membrane  potent ia l  is far f rom being 

canceled within 8 min. Figure 7 exhibits only  minor  dents in the fre- 

quency responses of phase and  ampl i tude  in the range of 1 cycle/hr, 
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which corresponds to 10 min in the time scale. However, the small dents 
in Fig. 6 and in Fig. 7 indicate that there are secondary effects of the 
injected current. Subjecting five frequency responses of the electrical 
impedance (see Fig. 7) to the same curve fitting routine as in the case of 
Fig. 2A resulted in complex time constants being of the same magnitude 
as "c 2 and "c 3. The mean value is 480___520j(sec) and within the range 
given by the variance of r 2 and % in Table 1. These findings will be 
discussed in more detail below. 

Discussion 

Existence of a Feed-Back Loop 

In the introduction it has been outlined that it is reasonable to 
assume that the pH of the cytoplasm is controlled by means of the 
transmembrane transport of protons or hydroxyl ions. Since this kind of 
transport is believed to be electrogenic, the action of the control system 
is expected to become obvious in the kinetic behavior of the membrane 
potential. This suggestion is strongly supported by the observation of 
Davis (1974) that the light-induced changes of the pH in the cytoplasm 
and of the membrane potential are of like characteristics. 

The contribution of the experiments described in this article is to 
provide evidence that a kinetic analysis of the light-induced changes in 
membrane potential indeed reveals the existence of a feedback loop. Thus it 
is proved that these changes in membrane potential reflect the action of a 
control system. This statement could be achieved by performing the 
experiments under such conditions that the results could be subjected to 
a mathematical treatment. 

However, demonstrating the existence of the feedback loop is no 
proof that this feedback system is really the hypothetical one proposed to 
control the pH in the cytoplasm. Additional information has to be 
gained. Regarding this, it may be interesting that FlemstrSm (1973) has 
found oscillations of similar frequency (45 min) in the potential and in 
the hydrogen fluxes of frog gastric mucosa. 

Creating a model from Rearranging Eq. (4) and from the Comparison 
of Light-Induced Changes in Potential and in Resistance 

At first, the kinetic analysis may be extended a little bit further by 
dealing with the so-called "inverse problem". That is searching for 
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Fig. 8. The parallel-pathway model of the action of light on membrane potential due to 
l~q. (9) 

arrangements of reactions labeled by the time constants of Table 1, which 
are capable of creating the measured frequency response. The inverse 
problem is ambigious. Different arrangements of the reactions can result 
in the same frequency response. The correct model has to be selected by 
providing more information by additional experiments. 

In our case, the model shown in Fig. 8 displays the essential features 
of other possible models. In order to account for the experimental 
findings presented by Eq. (4), zs and "c 6 have to be in series with the slow 
reactions, because there are no zeros at high frequencies. The locations of 
"c 6 and of % before and behind the branching point, however, are 
completely arbitrary. The slow reactions have to be in parallel in order 
to generate the zeros n 1 to n 3. Especially, this arrangement can easily 
create the observed scatter of the signs of these zeros (see  Table 1) by 
small changes in c c and c h in Eq. (9). Equation (9) is mathematically 
identical to Eq. (4), but rearranged in such a manner that the structure of 
the model in Fig. 8 becomes obvious. 

_ 1 co(1  - p n )  § 
HU'~) ( 6) (1-PZ4) ~(1-prz)(1-P'C3) (1-p 'cl)  (1-p'cs)" (9) 

The sum in the bracket of Eq. (9) implies that the measured frequency 
responses in N i t e l l a  (see  Fig. 2A) result from the superposition of the 
frequency responses of three parallel pathways. There are a slow pathway 
('c a = 10 min) hyperpolarizing with light (see  the negative sign of c h in 
Table 2), a quick depolarizing pathway ('c4 -- 25 sec), and a feedback loop 
labeled by ~2 and %. c c and c h are measures of the relative contributions 
of the feedback loop and of the hyperpolarizing pathway, respectively, to 
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Table 2. The splitting parameters of Eq. (9) calculated from the experiments displayed in 
Table 1 ~ 

n [ s e c ]  o M N o .  C c cr M N o .  C h a M Hale p O" m 
[~v/%~ 

7~ -2798 5.5 6 -0.09 3.8 3 -2.61 1.8 25.3 1.9 
+2053 1.6 2 +0.48 8.8 5 

17~ -2110  3.2 9 -0.67 1.8 5 -2 .2  2.2 44.9 1.7 
+ 525 3.8 8 +0.42 4.8 12 

27~ + 993 4.9 6 -0 .14 2.7 4 -2 .4  2.9 63.5 1.5 
+ 0.26 1.5 2 

a Splitting was done before averaging. In the case of n and c C data with the same sign 
were averaged. The scatter in sign is believed to originate from the special function of 
the feedback loop as a final adjustment 

the whole effect, compared with the contribution Hde p of the depolarizing 
pathway. The averaged values of Cc, ch, Hde p and the hypothetical zero n 
are given in Table 2. Figure 2B demonstrates the splitting of the whole 
frequency response of Fig. 2A into its three components. After the 
splitting procedure, the characteristic phenomenon of the feedback loop 
becomes obvious, the resonance peak. 

The model in Fig. 8 may be elaborated a little bit further by ad- 
ditional information gained from the simultaneous measurement of the 
light-induced changes in membrane potential and in resistance (see 
Hansen & Keunecke, 1977). The changes in resistance are found to be 
too small in comparison with the changes in potential as to be related to 
changes in the passive permeabilities. In detail, the comparison of these 
two quantites demonstrates that the depolarizing pathway is due to 
slowing down an electrogenic pump with light, and the hyperpolarizing 
one is due to speeding up this or another pump. Starting from the 
generally accepted assumption that proton extrusion is the predominant 
electrogenic active transport in Nitella (Spanswick, 1972; 1974), the 
following hypothesis may be furnished. 

Switching on the light causes changes in the metabolism which result 
in an increase of the pH of the cytoplasm, as it has been observed by Davis 
(1974). The quick pathway slows down proton extrusion in order to 
balance the change of the pH. After the induction period the metabolism 
releases proton (see Davis, 1974) which have to be extruded by stimulat- 
ing the pump via the hyperpolarizing pathway. Both pathways achieve a 
crude control of the pH. The fine adjustment has to be performed by the 
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feedback loop. Since it is a feedback loop, it is highly sensitive to the 
actual state of the cell. Evidence for this special function of the feedback 
loop is supplied by the enormous scatter in c c (see Table 2), because a 
mechanism performing a fine adjustment has to support sometimes the 
hyperpolarizing pathway and sometimes the depolarizing one. 

The next two features discussed here provide no positive evidence for 
the model of Fig. 8, but they are necessary, because they exclude possible 
objections. 

Relation to Cyclosis 

The results of the experiments illustrated by Figs. 4 and 5 prove that 
the streaming oscillation and the oscillatory phenomenen due to "c 2 and 
z 3 are related to different mechanisms. However, it will not be surprising, 
if a relation of the feedback loop and of the cyclosis will be found, because 
Lucas and Dainty (1977) are supporting the idea that cytoplasmic 
streaming is involved in the transport of hydroxylions to the transport 
sites and thus in the regulation of the pH. 

With regard to that aspect it may be worthwhile to point out that in 
Fig. 4 C a small influence of the streaming oscillation on the amplitude of 
the light-induced signal is found. However, it is not believed that the 
H C O 3 / O H -  system is identical to the pump in Fig. 8, because that 
system is not activated at the low light intensities of about 1 W/m 2 
(Lucas, 1975a-b).  This holds for our cells, too, because the increased 
complexity of the kinetics of the changes in membrane potential evoked 
by higher light intensities points out the activation of additional pro- 
cesses (Hansen etal., 1973; Hansen & Keunecke, 1974). 

Relation to Membrane Potential 

The results of Figs. 6 and 7 demonstrate that the feedback loop is not 
�9 interested in controlling the membrane potential. This is similar to the 
findings of Gradmann and Slayman (1975) who have demonstrated that 
the feedback loop which shows up in the membrane potential of Neuros- 
pora is not involved in the regulation of membrane potential. 

Changing the Cytoplasmic pH by Injecting a Current 

Due to the measurements of Kitasato (1968), the membrane current 
in Nitella is mainly carried by protons. Thus the injection of a current by 
means of a microelectrode filled with KC1 will result in an exchange of 
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K + for H + in the cytoplasm. One hypothesis explaining the occurrence 
of the complex time constants in Fig. 7 is the assumption that the 
injected current changes the cytoplasmic pH and thus stimulates the 

feedback loop. The following calculation will give an estimate whether 
this change in pH may be of sufficient magnitude. It is a very crude 
estimation, because some data are uncertain or have to be taken from 
measurements in other tissues. 

Assuming a thickness of the cytoplasmic layer of 5 gm, a current of 
0.5 gA/cm2=5pmole /cm 2 sec of H § results in a change of the H +- 
concentration of 10 mmol/liter within 1000 sec. If the buffer capacity of 
the cytoplasm in Nitella is similar to that in Neurospora (Slayman & 
Slayman, 1968), 12 mmol/liter of H § cause a pH shift of 0.3 at pH 6.4. In 
Phaeoceros laevis a pH shift of 0.3 is related to a change in membrane 
potential of about 15mV (Davis, 1974). This change is of sufficient 

magnitude to explain the dents in Fig. 7, even if the major part of the 
protons is lost by the exchange with the bathing medium or with the 

vacuole. 

These investigations have been granted by the Deutsche Forschungsgemeinschaft. 
The author is indebted to Prof. Dr. C.L. Slayman and Dr. J. Warncke, NewHaven, 
Dr. habil D. Gradmann, Tiibingen, Dr. R Keunecke and Prof. Dr. K. Vanselow, Kiel, for 
helpful discussions, and to Dr. W.J. Vredenberg, Wageningen, for supplying Nitella 
translucens. 

Appendix 

I. Proof that Straightforward Reactions, Including Simple 
Backward Reactions, do not Create Complex Times Constants 

Since the existence of complex time constants like r2 and % in 
Table 1 is used as an indicator for the existence of a feedback loop, it 
seems to be worthwhile to present a proof that chains of straightforward 
reactions like that one shown in Eq. (A1) are not capable of creating 
complex time constants. 

A,+ I~-A,.~-A,_ 1.-~....~-A4~-A3.~A2~-A 1 k~ , (A1) 

In Eq. (A1) all reactions are first-order reactions or pseudo first-order 
reactions. By virtue of the linearization the scheme above also holds for 
more complicated reactions, because enzymatic concentrations, etc., are 
comprised in the reaction constants k~, m which describe the rate of 
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conversion from A t to A,,, (see Eigen & De Mayer, 1963). It should be 
pointed out that in Eq. (A1) the order of the indices is unusual, since 
No. 1 is the last reactant; however, this order is favorable for the 
following proof based on induction. 

At first we calculate the transfer functions (frequency responses) of 
the short chain A 4 to A~. The law of mass action leads to the following 
set of differential equations in the time domain: 

da 3 

dt 

da 2 

dt 

da 1 
dt 

= k43 a4 - (k34 q- k32) a3 -~ k23 a2 

= k 3 2 a 3 - ( k 2 3  + k21)a2 + k l e a  I 

= k21a2 - ( k 1 2  -F ke) a 1. 

(A2a) 

(A2b) 

(A2c) 

The differential Eqs. (A2a)-(A2c) are located in the time domain, 
because the a i are functions of the time, and have the meaning of 
concentrations. We are interested in frequency responses which are 
located in the frequency domain, where the A i are functions of the 
generalized frequency p and have the meaning of complex amplitudes of 
the changes in the concentrations. The transition from the time domain 
to the frequency domain can be done by the Laplace transformation 
(Milsum, 1966), which in our case results in a simple substitution of 
"d/dt" by p. For the investigation of frequency responses it is sufficient 
to use the following identity 

p =2rcj f  (A3) 

with f being the frequency, j =]/-Z1. The Laplace transform converts 
Eqs. (A2a)-(A2c) to Eqs. (A4a)-(A4c). 

pA 3 = k43 A4 - (k34 q- k32 ) A3 q- k23A 2 

pA 2 = k32A 3 - (k23 if- k21 ) A2 q- kl2A 1 

PA1=k21A2- ( k12  + ke) A 1. 

(A4a) 

(A4b) 

(a4c) 

Rearranging the above equations leads to the following transfer func- 
tions or frequency responses: 

A~_ k21 
A2 (p _t_ ke _~_ k12) (AS) 

A~ _ k32(P -~" k e -t- k 12) 
A3 (p+k23+k:x) (P+ke+k12)_k t2k21  (A6) 
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with 

A 3 =  k43 {(P + k23 + k21)(p q- k e q- k12 ) - klz k21} 
A 4 denominator 

A~ = k43 k32(P q- k e + k 12) 
Ar denominator  

(A7) 

(A8) 

A 1 -  k43k32k21 (A9) 
A 4 denominator  

denominator  = (p + k34 + k32 ) {(p q- k 23 q- k21) (P + ke + k t2) - k l 2 k21} 

new root parabola 
(A10) 

-k23k32(P q-k e q-k12 ). 

straight line 

For the transfer function in Eqs. (A5)-(A9) the following statements are 
found to hold: 

1. All the roots of the denominators (which will be called "poles" or 
"inverse time constants") are real numbers. 

2. In the case of the transfer functions which describe the ratio of 
subsequent reactants (AI/A 2, A2/A3, and A3/A~), the number of the roots 
of the numerator  (called "zeros") is less by one than the number of poles. 
If zeros are existent (e.g., in A2/A 3 and AJA4), the zeros and poles are 
located in such a sequence that they alternate with each other. 

3. Transfer functions starting with the same reactant (in this case A4) 
have the same poles (due to the same denominator) and differ only by 
the numerator. 

Because it is difficult to calculate the roots of the polynomials of the 
third degree in the denominator  of Eqs. (A7)-(A9), the statements 1 and 
2 will be verified by means of the graphs in Fig. A 1. 

The roots 11 and 12 of the denominator  of A2/A 3 are given by the 
intersections of the parabola (p + k 23 + k21)(P q- ke q- kl 2) with the horizon- 
tal line k12k21 . These intersections always exist, and thus statement 1 is 
verified. 11 and 12 are located outside the range between the roots of the 
parabola being 

r l = - ( k e + k 1 2  ) and r2=-(k23q-k21 ). ( A l l a ,  b) 

Since r 1 is the zero of A2/A 3, statement 2 is verified. The roots of the 
denominator  of A3/A 4 are given by the intersection of the parabola of 
the third degree having the roots 11 and 12 (see A2/A3) and the new root 
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Fig. AI. Generation of the poles (x)  and zeros (o) of the transfer function Eq. (A6) (A), 
Eq. (A7) (B, C), and Eq. (A15) (D-F). B, C and D-F differ by the assumption of the 
location of np. In the upper parts of the illustrations the intersections of the parabolas of 
the denominators are shown, which lead to the configurations displayed on the p-axis in 

the lower parts 

n p =  -(k34+k32) (A12) 

with the straight line crossing the p axis at r~. r t has been shown to be 
located between 11 and I 2. The graph in Fig. 1B shows that again the 
new roots Pl, P2, and P3 are existent and thus real (statement 1) and that 
the zeros of A z / A  3 (I 1 and 12) are located between two poles, each 
(statement 2). In the graph np is located at the left hand side of 12. The 
situation is not changed significantly, if np would be located between rl 
and I 2 (exchange  I 2 and np). 

There is a third and fourth possible location for np, i.e., at the right 
hand side of 11 or between rt and 11. In these cases which are illustrated 
in graph C, the statements 1 and 2 are verified, too. 
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Now we have to prove that the statements 1 to 3 hold for a chain of 
arbitrary length. We shall do so by induction. We assume that the 
statements 1 to 3 hold for the chains starting with An, that means in 
detail that the transfer function 

An- 1 _ N(p) (A 13) 
kn- l,n" An D(p) 

fulfills the statement 1 to 3. Making use of this assumption, we calculate 
the transfer function AJA ,+I .  The law of mass action leads to the 
following equation 

pAn=kn+l,nAn+l-(kn, .+l  +kn, n_OAn+kn_~,nAn_l. (A14) 

Inserting Eq. (A13) into Eq. (A14) and rearranging Eq. (A14) leads to 

An - kn+ l""DtP) -kn+ I'"D(P) (A15) 
An+ 1 (P+kn, n+l +kn, n_l)D(p)-N(p ) M(p) 

The locations of the poles of Eq. (A15) can be determined by means 
of the graphs in Fig. A 1 D - F .  The three graphs differ by the possible 
locations of the new pole 

np= -(kn, ,+ 1 +k,,n_ 1) (a16) 

being at the left hand side of the old poles d 1 to dn_ 1 (graph D), in 
between them (graph E) or at the right hand side (graph F). In the graph 
this is shown for 6 poles and 4 zeros; however, it is seen that the sketch 
holds for an arbitrary number of poles and zeros, because some more 
swings may be interposed between d n_l and Ps. In any case it can be 
seen that the statements 1 and 2 are verified. 

1. The number of intersections (number of poles) is equal to the 
degree of the parabola, thus the roots are real numbers (real time 
constants), and no complex time constants can occur. 

2. The poles (Pl to p,) and the zeros (d 1 to d n_ 1) are located in such a 
sequence that they alternate with each other. A short remark may be 
worthwhile regarding the intersection Pl and Pn: The degrees of the 
parabolas of the numerator  and the denominator differ by two, and the 
sign of the highest coefficient is positive in both cases. Thus the parabola 
of the denominator has to overtake the parabola of the numerator, 

creating P l and pn. 
3. The proof of the third statement is simple and will not be 

discussed in detail. It is easily seen that An/A n + 1 and A n_ 1~An + 1 have the 
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same denominator 

An_ 1 _ A , _  1 A,  =N(v).k,+l,,D(p)_ k,+l, . N~p) (A17) 

An + 1 An An + 1 D(p) k n_ 1,n M(p) kn-  1, n M(p) " 

The above consideration can be extended to the whole chain showing 
that all chains starting with A, + 1 have the same main denominator M(p), 
and thus all these subchains create only real time constants. 

Since the statements 1 to 3 hold for the first three steps and for the 
step from n to n +  1, the validity of the three statements is proved for 
chains of arbitrary length by means of the method of induction. Thus 
the complex time constants in Table 1 point out the existence of a 
feedback loop. 

A backflow from A k to A, with k being less than n -  1 will be called a 
feedback loop. If there is a backflow from A k instead of A,_ 1, then the 
number of roots of N(p ) is less by 2 or more than the number of roots of 
D(p). In that case complex roots of the denominator may occur. This is 
seen from Fig. A 1E. If, e.g., the root of N(p) adjacent to np is absent (due 
to the reduced number of roots of N(v))then (p-pn)D(p~ may oscillate 
through the three adjacent roots without crossing N(v ). Thus there are 
two intersections less than expected from the degree of the parabola. In 
order to complete the number of roots, there has to be a pair of complex 
roots. Thus it is seen that chains comprising a feedback loop may have 
complex time constants in contrast to chains without feedback loops. 

2. Proof that Branched Straight Forward Chains, too, 
Create no Complex Time Constants 

Branching is illustrated by the following arrangement of reactions 

A,+ a,~A, ~ - ~  A,_ 1,-~A,_ 2~--~ "" " . - ~ A 1 .  (A 18) 

B,,~---Bm- t ~- . . . . . .  ,~-B 1. (A 19) 

The two chains are connected by the reaction 

A, + B m --+ A, _ 1. (A 20) 

The reactions above lead to the following differential equations 

da, . 
dt =k"+l ' "a"+l -k" ' "+la"+k"- l ' "a" - l - k" ' " - lbma"  (A21) 
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dbm - Cm, ~ -  1 b,, + % _  1 m bin- 1 - k ,  ~ 1 bm G.  (A 22) 
dt ' ' -  

The terms Gb, ,  are nonlinear terms. Thus it becomes necessary to make 
use of the advantages of linearization. All concentrations are split into a 
steady-state term indexed by an "s" and a variable term indexed by a "v", 

e.g. _ s v (A23) 
a n - -  a n q- a n 

a n b m = a~ b~ + b~ a~ + aS b~ + a~ b~,. (A 24) 

By virtue of the linearization, the terms comprising only steady-state 
terms can be omitted, because the sum of the steady-state terms has to be 
zero, and the terms containing more than one factor indexed by "v" can 
be omitted, because by making the test signal small, the terms of higher 
order can always be made much less than the linear terms. 

Making use of these simplifications Eqs. (A21) and (A22) convert in 
the frequency domain to (capital letters): 

v ~ k ~ S B  ~ s ~ P A ~ = k . + l , n A ~ + l - k ~ , n + ~ A . -  n ,~ - l~n  m - k n , ~ - l B m A . + k . - 1 , ~ A . - i  
(A25) 

_ , S B  ~ n s a ~  ~ B ~ . ( A 2 6 )  p B m - - k ~ .  1A~ m-kn, n-l~m~ln-Cm,m-1 m+Cm_l,mBV_l 

Due to the proofs displayed above, the transfer functions 

B~_ I R(v) (A27,28) A n -  l _N(p)  and Cram 1 Bm -- k .... -1 A~ D(p )' ' - ~ S(b ) 

fulfill statements I and 2. 
Thus Eqs, (A25) and (A26) convert to 

A : { ( p - p a ) D ( p ) - N ( r )  clS(P) }=c2AV+l.  (129) 
D (p) (P - Pb) S(v)  - R(;) 

The meanings of G, Pb, Ca, and c 2 can be seen easily from the compari- 
son of Eq.(A29) with Eq.(A25); however, their values are of little 
interest. Statements 1 and 2 also hold for the following two expressions 

D(p) _ D(v ) (A 30) 
M ~p) (p - G)  D (r) - N(p) 

S(p)_ clS(p ) (A31) 
T(p) ( P - - P b )  S ( p ) - - R ( p ) "  

Now, we have to consider the locations of the poles and zeros of 
Eq. (A 32) 
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U(p) ~ ~ ~ ~ ~ 

M(p) x x xl 

I S(p) o o,, :/~!~ 
' , U(p) 

T(p)  x x x i x ,' 

, ' , ' , v i i  , -  n 
I I i i r 

' ' ' I  I I, ~ J _j 

I U [ I I :, 
[ I I ]1 r l  

r i I i i  IE 
] I I L I 

P~- ~ poles ( x )  and zeros ( o ) of A n / A  n 

Fig. A2. Generation of the poles (x) and zeros (o) of Eq. (A 32) 

+1 

A~.+ 1 _ c  2 D(p). T(p) . (A32) 
A~, M(1,) T(p) - D(p)S(p) 

In Fig. A2 the locations of the roots of D(v), M(p), Tip), and Sip) are drawn. 
Since s ta tement  2 holds for D<p)/M(p) and S(p)/T~v ~ never three roots of 

U(p) = M(p) T(p I (crosses) (A 33) 

can be adjacent wi thout  a root  of 

V(p I = D(p)S(p) (circles) (A 34) 

in between and vice versa. If there were an interval with three adjacent 
crosses, two of the crosses would originate from M(p) or T~p). Due to 
s ta tement  2 applied to Eqs. (A30) and (A31), one circle originating from 
D(p) or Sip ) has to be located between them; thus only one cross 
originating from M(p) and one from T~p) may be adjacent wi thout  a circle 
between them. 

As it is illustrated in Fig. A2, Utp) cannot  escape from intersecting with 
Vtp) once per root, because the intersections occur at locations between 
the roots of U(p) and V(p). There are not  more  than two roots of one kind 
unseparated by a root  of the other kind, thus each circle has a neighbor- 
ing cross and thus a neighboring intersection, except for the outside 
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crosses, but there are intersections because U(p) has to overtake and cross 
V(p) due to the higher degree. Thus, statement 1 is verified for A , / A ,  + 1. 

In order to verify statement 2 we have to discuss three cases. 
1. Two adjacent roots of D(p)T(p) originate from D(p~ only. Then there 

is a zero of M(p) between them due to statement 2 applied to Eq. (A30), 
and U(p I and V(p / have an intersection between the two roots, which are 
zeros of Eq. (A 32). 

2. They originate from T(p~. That is similar to the case above. 
3. They originate from T(p) and D~p). Then U(p) and V(~) have to 

intersect between them, too, because T(p) is part of U(p~ and D(p) is part of 
g(p)" 

Thus it is verified that in the case of branched straightforward 
reactions statements 1 and 2 are verified. 
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